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Abstract

The Message Passing Interface (MPI) is the standard inter-process communication library
developed to implement a portable, efficient, and scalable parallel program.  In this paper, I evaluate
the MPI by implementing the sonar algorithm called “Range Focused k-ω Beamforming” and
conducting several experiments.  The general overview of MPI is described with its history and
current status.  A description of the parallelization approach utilized is provided along with the
experimental results on three parallel machines: Cray T3D, SGI Origin 2000, and embedded
Mercury RACE system.

I conclude that the MPI is a practical tool to implement a portable, efficient, and scalable
parallel program for a real-time system, however, it is not easy to write an efficient program.  MPI
always includes communication overhead but the impact of this overhead may be reduced by the use
of nonblocking communication routines, double buffers, and increased problem size to lower the
communication/computation ratio.  The visualization tool called “upshot” is helpful to finely tune the
program to achieve load balancing.

Introduction

A beamformer is an essential part of a sonar (SOund NAvigation and Ranging) and radar
(RAdio Detecting And Ranging) system that combines the sensor inputs in an appropriate fashion
to detect the targets of interest in real-time.  There have been many beamforming algorithms
developed and more are currently being developed to achieve increased accuracy and efficiency.  
Even one of the most efficient algorithms, however, is computationally very intensive and requires a
great amount of memory.  It is called “Range Focused k-ω Beamforming” [10].  Naturally, parallel
computers are needed to support its computational demand.

Over the past few years, many parallel computers have been developed and deployed as a
platform for sonar systems.  However, there have been a number of challenges confronted in
programming parallel computers.  The software developed for one system could not be ported to
new and improved hardware without great expense mainly because the inter-process communication
schemes and languages are not standard across different architectures.  Also the need for scalability
of the parallel program has arisen to accommodate different problem sizes, such as a different
number of sensors, increased look directions or ranges, etc.  Portability and high performance are
conflicting attributes.  A parallel program must not depend on machine specific operations designed
for high performance to be portable, however, it must achieve the high performance without
sacrificing portability.

Three different parallel programming paradigms are currently being widely used in writing
parallel programs: data parallelism, shared memory, and message passing.  High Performance Fortran
(HPF) [5][9], a set of extensions to Fortran 90, is the most popular data-parallel language, in which



the compiler generates a parallel program from a serial program.  The data is distributed over the
processors and each processor executes the same instructions on its portion of the data.  This
paradigm is very well suited to Single Instruction Multiple Data (SIMD) machines and for
algorithms with very regular data structures.  If the algorithm, however, uses a dynamic and sparse
data structure, then it is not easy to balance the loads because the data mapping is done at compile
time.  Shared-memory [4][9] is a paradigm for both shared memory and distributed memory
systems, in which the processes communicate by directly sharing data as if the data existed in a
global memory space.  The main advantage usually associated with the shared memory paradigm is
that the application programming interface is quite simple and therefore the complexity of
developing parallel applications is reduced.  Understanding and managing the locality of the data,
however, becomes more difficult and writing deterministic parallel programs is also difficult.
Message-passing [1][2][6][7][8] is a paradigm for both shared memory and distributed memory
systems and is based on the explicit sending and receiving of messages.

Of these methods, the MPI standard is currently the most widely used method for
programming parallel systems since it is designed to achieve portability, high performance, and
scalability [1][2][6][7][8][9].  The MPI program is portable since there are many implementations
available either freely or commercially and is efficient because virtually all parallel computer vendors
supply their own optimized versions of MPI [11].

The rest of this paper is organized as follows.  Section 2 gives a general overview of MPI with
its history and current status.  In Section 3, the parallelization effort of the “Range Focused k-ω
Beamforming” algorithm using MPI is described.  In Section 4, the result of a number of
performance measurements is presented.  In Section 5, the lessons I have learned are described with
a future plan.

Message Passing Interface

History

The message-passing paradigm for parallel programming is widely used among parallel
computer vendors and users.  There have been a number of libraries developed and used to achieve
portability between parallel applications [1][2][6]; PICL, PVM, PARMACS, p4, Chameleon,
Zipcode, TCGMSG, and Express.  These libraries have competed with one another and each vendor
has focused on making its product unique.  The syntactic differences and numerous minor
incompatibilities made it difficult to port applications from one computer to another [1][2][6].

In April 1992, many researchers from vendors and universities began the effort to create a
standard to enable portability of message-passing programs at a workshop on Standards for
Message Passing in a Distributed-Memory Environment [1][2].  As a result of that workshop, the
Message Passing Interface (MPI) Forum was organized at the Supercomputing ’92 Conference.  The
first version, Version 1.0, of the MPI Standard was completed in May 1994, and it has evolved
since.

From the very beginning of the MPI Forum while the MPI Standard definitions were still
evolving, Gropp and Lusk started developing the very first implementation of MPI, MPICH [1].



They could implement the proposed definitions very quickly because the large portion of MPICH
was borrowed from the existing portable libraries; p4, Chameleon, and Zipcode.  This approach
quickly exposed the problems that the proposed specification might pose for other implementers
and also provided the experimenters with a way to try ideas being proposed for MPI before they
became fixed into the standard.  This unique approach made a complete, portable, and efficient
implementation of MPI available when the MPI Standard was released in May 1994.  The MPICH
provided an Abstract Device Interface (ADI) to achieve portability and high performance among
different parallel architectures.  Consequently, individual vendors and users have taken advantage of
this interface to implement their own optimized implementations of it in a short period of time.

Overview of MPI

MPI is a standard message-passing interface for parallel programs.  MPI is not a new
programming language, rather it is a library of definitions and functions that can be used by C or
Fortran programs.  The primary goal of the MPI specification is to help the users implementing a
portable, scalable, and efficient parallel program.  MPI supports both the multiple program multiple
data (MPMD) model in which each process executes a different program on different data sets and
the single program multiple data (SPMD) model in which each process executes a same program on
different data sets [9].

In a typical MPI program, a fixed set of processes is created at program initialization, and one
process is created per processor.  A subset of processes can be grouped together to form a
communicator that can send messages between the members.  Each communicator is composed of a
group and a context.  A group is an ordered collection of processes where each process in the group
is assigned a unique rank.  A context is a system-defined object that is associated with a group in a
communicator.  Two distinct communicators have different contexts, even if they have identical
underlying groups.  MPI provides an additional way, called a “virtual topology”, for associating
different addressing schemes with the processes belonging to a group.  There are two types of
virtual topologies in MPI, Cartesian or grid and graph topology.  Even though there may be no
simple relationship between the process structure in a virtual topology and the actual physical
structure of the parallel system, virtual topologies help to relate the application semantics to the
message passing semantics in a convenient and efficient way [2][6][7].

MPI provides basically two kinds of communication schemes, collective or global and point-to-
point communication operations.  A group of processes can use collective communication
operations to send or receive messages to or from every process in a group and also to perform user
defined or predefined global operations such as summation, product, maximum, minimum, etc.
Processes can use point-to-point communication operations to send messages from one process to
another [2][6][7][8].  

The set of point-to-point communication routines is very rich and forms the core of MPI.
They are categorized into blocking and nonblocking routines [2][6][7][8].  Blocking send and receive
routines do not return until it is safe to alter the message buffer.  Nonblocking send and receive
routines may return while the message buffer is still volatile, and therefore it is the programmer’s
responsibility to ensure that the message buffer is not changed until it is guaranteed that this will not
corrupt the message.  Nonblocking routines always come in two parts: a posting routine to start the



operation and a testing routine to complete the operation.  Nonblocking routines overlap
communications and computations, consequently they provide dramatic improvements in the
performance of message passing programs.

There are four different point-to-point communication modes for send operations; standard,
synchronous, ready, and buffered [2][6][7][8].  In standard mode, a message may be sent regardless
of whether a corresponding receive has been initiated and it is up to the system to decide whether
messages should be buffered.  In synchronous mode, a send is the same as in standard mode, except
that it will not complete until a corresponding receive has started, therefore system buffering is not
required.  In ready mode, a message may be sent only if a corresponding receive has been initiated,
thus the ready send is erroneous if the corresponding receive has not been initiated.  In buffered
mode, a send is the same as in standard mode, except that its completion does not depend on the
occurrence of a corresponding receive and the user must explicitly allocate the buffer to ensure that
the system resources are not exhausted during communications.  There is only a standard mode for
receive operations, in which a receive call may start whether or not a corresponding send has been
initiated.

In summary, MPI is comprised of 129 functions and definitions [7].  As shown in Figure 1,
MPI functions can fall into 7 categories: environmental management, groups and communicators,

Figure 1. General Categories of MPI Functions
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process topologies, derived datatypes, profiling interface, point-to-point communication, and
collective communication functions.

Current Status

Currently MPI is supported by virtually all parallel computer vendors, a network of UNIX or
Windows NT workstations, and embedded systems.  The MPI Forum has continued evolving the
definition to resolve deficiencies in the current standard and add new and powerful functionalities.
The MPI-2 standard was finalized in July, 1997 [11].  MPI-2 provides the standard for dynamic
programming management, one-sided communications, parallel I/O, extended collective operations,
bindings for Fortran 90 and C++, and interlanguage interoperability.  Furthermore, other groups
formed MPI/RT (Message Passing Interface/Real Time) Forum and have been meeting regularly to
design an MPI for real-time programming [11].

Parallel Design Description

This beamforming algorithm [10] like any other algorithm consists of three parts: input,
beamforming, and output.   Only the beamforming part is parallelized because the input and output
stages must be serial.  An input processor receives the input data from an external source and
distributes them to beamforming processors.  An output processor collects the output data from
beamforming processors and sends them to an external display device.  The beamforming part [10]
mainly consists of three steps: transforming input data into frequency and wavenumber domain
using a two dimensional Fast Fourier Transform (2DFFT); generating beam output using
interpolation; and transforming output back to the time domain using an Inverse FFT (IFFT).

To take advantage of a parallel architecture, two processors are dedicated to an input and
output processor, respectively.  The remaining processors are utilized as beamforming processors.
The parallelization of the beamforming algorithm was approached through domain decomposition
[9] in which the data was partitioned.  This leads to the principal employment of a Single Program
Multiple Data (SPMD) model, in which N-2 processors (N is a total number of processors) work on
a different portion of the input data set.  This approach automatically balances the loads among the
N-2 processors.  It should be noted, however, that the whole program itself can be viewed as a
Multiple Program Multiple Data (MPMD) model since all three groups of processors; input,
output, and beamforming, execute different instructions concurrently.  The principle responsibility
of the input processor is to receive input data set from an external source and distribute them to N-2
beamforming processors.  The N-2 beamforming processors are tasked with performing two
dimensional FFT, beam interpolation, and IFFT to produce the beams.   The output processor is
responsible for collecting the output data from N-2 beamforming processors and sending them to an
external display device.

Each beamforming processor is given an approximately equal number of time series from an
input processor.  The received data are then transformed to the frequency domain using temporal
FFTs.  Here a real FFT is used to take advantage of a fact that the input data are real.  To perform
the spatial FFT, the data must be redistributed among N-2 beamforming processors because each
beamforming processor now has the intermediate results required by others.  The MPI collective
communication routine, MPI_Alltoallv, is used to distribute and gather the appropriate data in each



beamforming processor.  The gathered data are transformed to wavenumber domain using spatial
FFTs.  The core of the beamforming algorithm, beam interpolation, is performed to produce the
beam output.  The output is redistributed and gathered again using another MPI collective
communication routine, MPI_Alltoallv, for the IFFT operation where the beamformer output is
transformed back to the time domain.  Figure 2 depicts a block diagram of the parallel
implementation of the beamformer.

Using two collective communication routines within the beamforming processors looks very
odd and inefficient; however, a single processor could not perform 2DFFT simply because the
physical memory was limited.  Also one processor could not keep up with the real time
requirement.  In addition, the communication overhead is hidden by the intensive computation for
some of the larger deployed arrays, and it is allowed within the real time requirement for the smaller
deployed arrays.

The profiling program called “upshot” [3][6][8] is used to check how the loads are balanced
among beamforming processors.  The nonblocking MPI communication calls, MPI_Issend and
MPI_Irecv, are used to transfer the data between the input, beamforming, and output processor
groups.  These nonblocking calls are safely completed with MPI_Test and MPI_Wait routines.
While the beamforming processors are producing their portions of outputs, the input and output
processors are concurrently receiving and sending the data sets.  The use of double buffering in all
three groups reduces the delay introduced by waiting for other processors to finish.

Evaluation

All of the parallelization experiments were performed on three parallel platforms, Cray T3D,
SGI Origin 2000, and Mercury RACE system. The Cray T3D, a distributed-memory parallel
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Block diagram of the parallel implementation of “Range Focused k-ω Beamformer”.
FFT1 and FFT2 represent temporal FFT and spatial FFT, respectively.
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supercomputer, is equipped with 64 DEC
Alpha processors with a clock speed of 150
MHz each.  The SGI Origin 2000, a shared-
memory parallel supercomputer, is equipped
with 18 MIPS R10000 processors with a clock
speed of 250 MHz each.  The Mercury RACE
system, a VME based embedded processor, is
equipped with 24 Motorola PowerPC
processors with a clock speed of 200 MHz
each interconnected through a 160
Mbytes/second switched network called
RACEway.  Each system has a different
implementation of MPI; a freely available MPI
called MPICH [1] on the Cray T3D, a freely
available MPI called RACEMPI on the
Mercury RACE system, and SGIs optimized
version of MPI on the SGI Origin 2000.  All
parallel programs were written in ANSI C and
MPI.

Initially I implemented the beamforming
program on the SGI Origin 2000.  The
portability of the MPI program was verified by
moving the program to different platforms, the
Cray T3D and the Mercury RACE system,
recompiling the program, and running it
without any problem.

The scalability is defined to be the amount
of speedup achieved as additional processors
are added when executing the application
[8][9].  Ideal scaling, in this situation, would
see the parallel application execute N times
faster on N processors than the serial
application on a single processor.  In practical
terms, the speedup is limited by the
communication costs and Amdahl’s Law.
Amdahl’s Law [9] states: if the sequential
component of an algorithm accounts for 1/s of
the program’s execution time, then the
maximum possible speedup that can be
achieved on a parallel computer is s.  The
scalability of the MPI program was examined

using a different number of processors while keeping the problem size unchanged to analyze how
much speedup can be achieved.  The problem parameters used in this experiment were 8 focus
ranges, 400 sensors, 401 beams, 629 frequency bins, a temporal FFT size of 2048 points, and 100
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seconds of input data.  Note that two processors were always dedicated to input and output
processors no matter how many processors were used.  The SGI Origin 2000 was most flexible so I
could use any number of processors from 3 to all 18 in the experiments. The Cray T3D has a
restriction in which only a power of 2 of processors can be used.  Unlike SGI and Cray which are
equipped with a large amount of memory, Mercury RACE system contains only 16 Mbytes on
each processor.  This limited the minimum number of processors to 10.  As shown in Figure 3,
almost linear speedup was achieved on all three platforms to a certain point.  On the SGI Origin
2000, the degraded performance after 13 processors was noticeable because the communication
overhead becomes more expensive than the actual computation as shown in Figure 3(a).  The Cray
T3D system handled better in terms of the scalability as shown in Figure 3(b).  It did not show any
degraded performance with up to 64 processors.  The Mercury RACE system started showing the
communication cost when 24 processors were used, the execution time did not decrease even though
the number of processors was increased as shown in Figure 3(c).  From this experiment, the
beamformer needs at least 8 processors on the SGI Origin 2000, 32 processors on the Cray T3D,
and 15 processors on the Mercury RACE to satisfy the real-time constraint.

The efficiency of MPI program was measured by calculating the FLoating point OPerations per
Second (FLOPS) required in “Range Focused k-ω Beamforming” algorithm and comparing it with
the empirically measured FLOPS of each machine.  The empirically derived machine speeds were
42.0 MFLOPS on each Cray processor, 165.5 MFLOPS on each SGI processor, and 59.5 MFLOPS
on each Mercury processor.  These speeds were measured by using a simple program that measures
the execution time of one million floating point multiply/add operations.  The beamforming
algorithm basically consists of three steps, a 2 dimensional Fast Fourier Transform (2DFFT), beam
interpolation, and an Inverse Fast Fourier Transform (IFFT).

For the same problem size used in scalability experiment, the 2DFFT step requires
approximately 33.4 Millions of FLoating point OPerations (MFLOP), the interpolation step
requires 308.4 MFLOPs, and the IFFT step requires 70.5 MFLOPs.  By summing these, the total
number of floating point operations required in the beamforming algorithm is about 412.3 MFLOPs.
This number represents the necessary work to process about 0.9 seconds of input data.  From the
experiment as shown in Figure 3, to process 100 seconds of input data, the beamformer took 104.0
seconds on SGI Origin 2000 using 8 processors, 220.2 seconds on Cray T3D using 16 processors,
and 94.0 seconds on Mercury RACE system using 16 processors.  Therefore the achieved Millions
of FLoating point OPerations per Seconds (MFLOPS) per processor can be calculated on three

platforms as follows.  For the SGI Origin 2000, 
412.3 MFLOP 0.9 seconds

104.0 seconds 100 seconds
= 440.5 MFLOPS  per 8

processors.  Therefore it takes about 73.4 MFLOPS per processor (440.5 MFLOPS / 6 processors)
where the measured speed of a chip is 165.5 MFLOPS, achieving about 44.4 % of measured

performance.  For the Cray T3D, 
412.3 MFLOP 0.9 seconds

220.2 seconds 100 seconds
= 208.0 MFLOPS  per 16 processors.

Therefore it takes about 14.9 MFLOPS per processor (208.0 MFLOPS / 14 processors) where the
measured speed of a chip is 42.0 MFLOPS, achieving about 35.5 % of its measured performance.

For the Mercury RACE system, 
412.3 MFLOP 0.9 seconds

94.0 seconds 100 seconds
= 487.4 MFLOPS  per 16 processors.

Therefore it takes about 34.8 MFLOPS per processor (487.4 MFLOPS / 14 processors) where the



measured speed of a chip is 59.5 MFLOPS, achieving about 58.5 % of measured performance.
From the efficiency experiment, the MPI parallel program achieves about 35~60 % of the measured
performance of each processor.  Note that I am not considering processors dedicated to input and
output functions or processor intercommunication when I estimate the number of floating
operations required in the beamforming program.

One thing has to be noted here.  I had full control of the number of users on the Mercury RACE
system, but not on the SGI and Cray systems.  Even though I tried to conduct the experiments
while the number of users was at a minimum, the execution time on Cray and SGI might not reflect
the actual execution time of the MPI program because it might be affected by other users’ activities.  

Summary / Conclusion

The MPI is a standard inter-process communication library developed to implement a portable,
scalable, and efficient parallel program.  To evaluate MPI, one of the most efficient but
computationally demanding sonar algorithm called “Range Focused k-ω Beamforming” has been
implemented using MPI.  I demonstrated that the algorithm could be parallelized and implemented
on any parallel platform that supports MPI.  Here is what I learned:

• Using domain decomposition, which employs a SPMD design, one can effectively parallelize the
beamforming algorithm.

• The MPI parallel program is truly portable.  The only thing I had to do was specify the path to
the MPI library and recompile the program.  Even though I tested the beamformer program on
only three parallel platforms, there is no doubt that it will run on any parallel platform that
supports MPI.

• The MPI parallel program is scalable to various numbers of processors with an appropriate
speedup if the computation burden is large enough to compensate for the communication time.
However, as the number of processors increased, the communication overhead greatly limits the
speedup experienced and even degrades it.

• The MPI parallel program is efficient enough to be feasible on a real-time system.  The
beamformer program achieved about 35~60 % of the measured performance on each processor.

• It is not easy to write an efficient parallel program using MPI because the programmer has to
consider many small details related to intercommunication.  The MPI routines for nonblocking
communication reduce the communication time, but they are very dangerous and have to be used
very cautiously in order not to destroy the useful data.  The use of double buffering increased
the throughput.

• The visualization tool called “upshot” program is very helpful to check the load balancing and
any inefficiency.  Using this tool the program can be finely tuned to achieve the optimum
throughput.

In summary, the MPI is a practical tool to implement a portable, efficient, and scalable parallel
program.  The MPI based parallel program proved to be portable to other parallel platforms,
efficient enough to be feasible on a real-time system, and scalable to various number of processors
with an appropriate speedup achievement.  It should be noted that MPI has communication



overhead and that increasing the problem size to lower the communication/computation ratio may
reduce the impact of this overhead.

In the future, I plan to port the beamformer to other parallel platforms such as a network of
personal computers running Windows NT or Linux connected through Myrinet.  Also, I am
currently implementing another beamforming algorithm called, “Adaptive Range Focused k-ω
Beamformer” using MPI.
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